Comparison of bubble detectors and size distribution estimators
نویسندگان
چکیده
Detection, counting and characterization of bubbles, that is, transparent objects in a liquid, is important in many industrial applications. These applications include monitoring of pulp delignification and multiphase dispersion processes common in the chemical, pharmaceutical, and food industries. Typically the aim is to measure the bubble size distribution. In this paper, we present a comprehensive comparison of bubble detection methods for challenging industrial image data. Moreover, we compare the detectionbased methods to a direct bubble size distribution estimation method that does not require the detection of individual bubbles. The experiments showed that the approach based on a convolutional neural network (CNN) outperforms the other methods in detection accuracy. However, the boosting-based approaches were remarkably faster to compute. The power spectrum approach for direct bubble size distribution estimation produced accurate distributions and it is fast to compute, but it does not provide the spatial locations of the bubbles. Selecting the most suitable method depends on the specific application. © 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ )
منابع مشابه
A New Approach for Determination of Neck-Pore Size Distribution of Porous Membranes via Bubble Point Data
Reliable estimation of the porous membranes neck-pore size distribution (NPSD) is the key element in the design and operation of all membrane separation processes. In this paper, a new approach is presented for reliable of NPSD of porous membranes using wet flow-state bubble point test data. For this purpose, a robust method based on the linear regularization theory is developed to extract NPSD...
متن کاملImproving the Performance of Bayesian Estimation Methods in Estimations of Shift Point and Comparison with MLE Approach
A Bayesian analysis is used to detect a change-point in a sequence of independent random variables from exponential distributions. In This paper, we try to estimate change point which occurs in any sequence of independent exponential observations. The Bayes estimators are derived for change point, the rate of exponential distribution before shift and the rate of exponential distribution after s...
متن کاملComparison of Small Area Estimation Methods for Estimating Unemployment Rate
Extended Abstract. In recent years, needs for small area estimations have been greatly increased for large surveys particularly household surveys in Sta­ tistical Centre of Iran (SCI), because of the costs and respondent burden. The lack of suitable auxiliary variables between two decennial housing and popula­ tion census is a challenge for SCI in using these methods. In general, the...
متن کاملEstimation Methods for the Parameters of Birnbaum-Saunders Distribution
Abstract: Depending on the type of distribution, estimation of parameters are not sometimes simple in practice. In particular, this is the case for Birnbaum-Saunders distribution (BS). In this article, we present four different methods for estimating the parameters of a BS distribution. First, a simple graphical technique, analogous to probability plotting, is used to estimate the parameters an...
متن کاملClassic and Bayes Shrinkage Estimation in Rayleigh Distribution Using a Point Guess Based on Censored Data
Introduction In classical methods of statistics, the parameter of interest is estimated based on a random sample using natural estimators such as maximum likelihood or unbiased estimators (sample information). In practice, the researcher has a prior information about the parameter in the form of a point guess value. Information in the guess value is called as nonsample information. Thomp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition Letters
دوره 101 شماره
صفحات -
تاریخ انتشار 2018